已发表中、英、日科技论文190余篇,其中SCI源刊收录95篇,Ei、ISTP收录35余篇。SCI源刊他引1300余次(H-Index=23), 总他引5600余次(2003-2016年度),出版专著2本(《材料力学行为试验与分析》第1、第2版,9999js金沙老品牌出版社,2007、2010),译著1本(《泡沫金属设计指南》,冶金工业出版社,2006),编著1本(《先进材料力学行为实验指南》,9999js金沙老品牌出版社,2010),英文专著(《Special Issues on Magnesium Alloys》 Edited by Waldemar A. Monteiro, InTech Org. 2011)中专论1章(Fatigue cracking behaviors and influence factors of cast magnesium alloys,已被下载1500余次(2012年底))。获得专利4项,其中发明专利1项,实用新型3项。主要学术贡献体现在以下2个方面:
1、生物力学与仿生研究—在科学研究中首次在国际上发现并命名了蜻蜓翅膀纵向茎脉的“三明治”微结构,在此基础上提出了茎脉承受最大弯矩和扭矩下的微结构模型如图1所示。用风动升阻力系数的实验检测和数值模量方法证实了具有皱褶功能的“三明治”微结构比早期报道的空心管结构更符合实际和更能合理解释蜻蜓翅膀的飞行机制,后续工作表明茎脉微结构的差异对振动、翅膀弦向皱褶行为以及受力状态等的定量表征有较大的影响。以典型的蜻蜓翅膀为研究对象并基于SEM观测尺度下的微结构(生物分级结构)与力学行为关联的试验研究思想有助于合理的进行仿生设计。该模型现已受到国内外的广泛关注如Indian Institute of Science航空工程系的Ganguli R教授在最近的Experimental Mechanics 2010; 50(8):1183-1197; 及Rajabi H.教授在 Journal of Bionic Engineering 2011; 8( 2): 165-173等都正面肯定了其发现及价值,国内同济大学航空与工程力学系的学者们也对其结构发现给出了肯定和后续相关研究报道。这一重要的科学发现对设计自适应能力更强及能量消耗最小的微型飞行器(MAVs)具有重要的指导作用;相关成果先后分别发表在Wang (2008) Composites Science and Technology 2008; 68(1): 186-192详见代表论文(著)1,10,Chinese Science Bulletin 2011; 56(16) 1658-1660, Journal of Bionic Engineering 2012; 9:185-191, Chinese Physics B 2012; 21(3): 034501,Journal of Bionic Engineering 2013; 10(1):28-38。同时该论文被评为当年高引用论文之一并获得现金奖励。
2、 疲劳与断裂行为研究—发现了铸造镁铝合金疲劳裂纹萌生机制,定量表征了室温与高温下疲劳裂纹扩展规律和剩余寿命预测公式,促进了后续的铸造镁铝合金的合金结构改造,提高了铸造镁铝合金疲劳强度和高温热裂纹萌生阻力;借助SEM原位实验系统,成功跟踪了超高强度钢中的微夹杂物对疲劳裂纹萌生与初期扩展规律,揭示了除夹杂物几何尺寸对疲劳裂纹产生影响外,夹杂物几何长轴与加载方向夹角对疲劳裂纹萌生诱导的疲劳断裂影响给出了定量表征,改变了一味追求最小夹杂物尺寸的高成本制备工艺,通过旋转滚压工艺方式促使夹杂物有序排列,达到提高超高强度钢的疲劳断裂极限;实验研究了核用石墨材料的疲劳裂纹扩展规律,建立了该材料的疲劳裂纹扩展速率的定量表达式,为第4代核反应堆的石墨材料抗地震的防断裂设计提供了理论依据;对增材制造(SLM)Ti、AlSi10Mg合金的疲劳微裂纹萌生、损伤容限、寿命预测模型以及与传统制造(锻造)同类材料疲劳性能的异同进行了详细的实验研究。
近5年已发表的主要SCI论文:
1. Liu A, Zhang YT, Wang XS*, Xu W, Zhang Y, He YH. Evaluation of the influences of the stress ratio, temperatures, and local microstructure on small fatigue crack propagation behavior of the FGH96 superalloy. International Journal of Fatigue 2023; 171:107573; doi.org/10.1016/j.ijfatigue.2023.107573.
2. Liu A, Liang Z, Wang XS*, Xu W, Zhang Y, He YH. Investigation of fatigue small crack propagation behavior in superalloy FGH96 under different stress ratios. Journal of Materials Engineering and Performance 2022; https://doi.org/10.1007/s11665-022-07505-w.
3. Liang Z, Liu A, Wang XS*, Zhang NQ. Experimental and modeling study on small fatigue crack initiation and propagation behavior of Inconel 617. International Journal of Fatigue 2022; 164: 1017158, doi.org/10.1016/j.ijfatigue.2022.107158.
4. Xu ZW, Liu A, Wang XS*. Fatigue performance differences between rolled and selective laser melted Ti6Al4V alloys. Materials Characteristics 2022; 189: 111963; doi.org/10.1016/j.matchar.2022.111963.
5. Liu A, Xu ZW, Liang Z, Wang XS*. An evaluation on high cycle fatigue fracture characteristics of 2024-T351 alloy with different surface defects. Mechanics of Materials. 2022;164:104133 doi.org/10.1016/j.mechmat.2021.104133.
6. Zhang ZH, Ito M, Wang XS*, Liu JS. The effect of bionic 3D printed structure morphology on skin friction. Journal of Tribology-Transactions of the ASME (Special issue) invited paper. 2021; 143 (5): 051103 doi.org/10.1115/1.4050138.
7. Xu ZW, Liu A, Wang XS*. Influence of macrozones on fatigue cracking behavior and fracture mechanisms of rolled Ti-6Al-4V alloy. Materials Science & Engineering A. 2021; 824: 141824; doi.org/10.1016/j.msea.2021.141824.
8. Xu ZW, Liu A, Wang XS*. Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions. Materials Science & Engineering A. 2021; 812: 141141; doi.org/10.1016/j.msea.2021.141141.
9. Xu ZW, Liu A, Wang XS*, Liu B, Guo MH. Fatigue limit prediction model and fatigue cracking mechanism of Ti6Al4V with inherent defects by the selective laser melting. International Journal of Fatigue 2021; 143: 106008; doi. org/10.1016/j.ijfatigue.2020.106008.
10. Wang Q, Wang XS*, Zhang NQ. Investigation on the fatigue damage mechanism of Inconel 617 at elevated temperatures by in-situ SEM fatigue test. International Journal of Fatigue 2021; 153: 106518 doi.org/10.1016/j.ijfatigue2021.106158.
11. Xu ZW, Wang Q, Wang XS*, Tan CH, Guo MH, Gao PB. High cycle fatigue performance of AlSi10Mg alloy produced by selective laser melting. Mechanics of Materials. 2020; 148: 103499; doi.org/10.1016/j.mechmat.2020.103499.
12. Wang Q, Xu ZW, Wang XS*. An efficient fatigue and creep-fatigue life prediction method by using the hysteresis energy density rate concept. Fatigue & Fracture of Engineering Materials & Structures, 2020; 43(7): 1529-1540; doi.org/10.1111/ffe.13230.
13. Wang Q, Zhang NQ, Wang XS*. A New 3D Creep-Fatigue-Elasticity Damage Interaction Diagram Based on the Total Tensile Strain Energy Density Model. Metals 2020;10(2):274; doi:10.3390/met10020274.
14. Xu ZW., Liu A., Wang XS*. The influence of building direction on the fatigue crack propagation behavior of Ti6Al4V alloy produced by selective laser melting. Materials Science & Engineering A. 2019; 767: 138409; doi.org/10.1016/j.msea.2019.138409.
15. Xu ZW, Wu SC, Wang XS*. Fatigue evaluation for high-speed railway axles with surface scratch. International Journal of Fatigue 2019; 123: 79-86; doi.org/10.1016/j.ijfatigue 2019.02.016.
16. Wang XS*, Tang CH, Fu LT, Zhu XD, Wang QY. Influence of multi-holes on fatigue behaviors of cast magnesium alloys based on in-situ scanning electron microscope technology. Materials 2018,11(9):1700; doi: 10.3390/ma11091700.
17. Yang HH, Zhang ZH, Tan CH, ITO M, Pan P, Wang XS*. Rotating bending fatigue microscopic fracture behavior and life prediction of 7075-T7351 Al alloy. Metal, 2018; 8: 210; doi:10.3390/met8040210.
18. Zhang ZH, Wang XS*, Ren HH, Jia S, Yang HH. Simulation study on thermo-fatigue failure behavior of solder joints in package-on-package structure. Microelectronics Reliability 2017; 75:127-134; doi:10.1016/j.microrel.2017.06.033.
19. Yang HH, Wang XS*, Wang YM, Wang YL, Zhang ZH. Microarc oxidation coating combined with surface sealing pores treatment enhanced corrosion fatigue performance of 7075-T7351 Al alloy in different media. Materials. 2017;10(6):609; doi:10.3390/ma10060609.
20. Wang XS*, Zhang ZH, Ren HH, Chen YL, Wu BS. Role of soft matter of dragonfly wing sandwich vein in its configuration and aerodynamics behaviors. Journal of Bionic Engineering 2017;14(3): 557-566; doi: 10.1016/S1672-6529(16)60421-3.
21. Wang YL,Wang XS*, Wu SC, Yang HH, Zhang ZH. High-cycle corrosion fatigue behavior and life prediction of 25CrMo steel used into railway axle. Metals 2017; 7(4):134; doi: 10.3390/met7040134.
22. Yang HH, Wang YL, Wang XS*, Pan P, Jia DW. Synergistic effect of corrosion environment and stress on the fatigue damage behavior of Al alloys. Fatigue & Fracture of Engineering Materials & Structures. 2016;39:1309-1316; doi: 10.1111/ffe.12457.
23. Yang HH, Wang YL, Wang XS*, Pan P, Jia DW.The effects of corrosive media on rotating bending fatigue lives of different aluminum alloys. Metals, 2016; 6(7):160. doi: 10.3390/met6070160.
24. Wang XS*, Guo XW, Nakamura Y, Yang HH, Pan P. Evaluation of the critical stress of anodized coating/AZ91D substrate using SEM in-situ technology. J. Zhejiang Univ Sci A, 2016; 17(1): 65-75; doi: 10.1631/jzus.A1500178.
25. Zuo JP*, Wang XS*, Mao DG, Wang CL. T-M coupled effects on cracking behaviors and reliability analysis of double-notched crustal rocks. Engineering Fracture Mechanics 2016; 158: 106-115; doi:10.1016/j.engfracmech.2015.11.001.
26. Wang XS*, Li XD, Yang HH, Kawagoishi N, Pan P. Environment-induced fatigue cracking behavior of aluminum alloys and modification methods. Corrosion Reviews 2015; 33(3-4):119-137; doi:10.1515/corrrev-2014-0057.